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A lateral junction waveguide-type GaInAsP/InP photodetector was fabricated on a semi-insulating InP substrate by two-step organometallic

vapor-phase epitaxy (OMVPE) regrowth. Responsivities of 0.9 A/W at 1500 nm and 0.27A/W at 1550 nm were obtained. A 3-dB bandwidth of

6GHz and 6-Gbps error-free operation under non-bias conditions were achieved with a stripe width of 1.4 �m and a device length of 220 �m.

# 2011 The Japan Society of Applied Physics

P
hotonic integrated circuits (PICs) with low power
consumption and a highly functional optical network
have attracted considerable interest in the fields of

communication and device research.1) The optical linking
instead of conventional electrical wire for data transmission
is promissing for realizing high speed computing system
like chip to chip or board to board communication in near
future.2) For example, it is believed that very soon the
limiting factor for very large-scale integration (VLSI) will
be wiring, and not logic devices. Signal delay, power
consumption, crosstalk, and other factors will present serious
problems in designing the entire system. In order to apply
semiconductor photonic devices to an optical interconnec-
tion with a short length, a low-power-consumption driving
technology and a small footprint could be important
requirements.3) High-index-contrast waveguides have at-
tracted considerable attention for use in compact and low-
power PICs that have a high degree of integration.4,5)

We proposed semiconductor membrane-based waveguide
devices with strong optical-field confinement in the core
layers along the vertical direction to achieve low threshold
and high efficiency operation as well as relatively small
footprint.6) Low-threshold-power (0.34mW) operation of a
membrane distributed feedback (DFB) laser was confirmed
under room-temperature continuous-wave (RT-CW) optical
pumping.7) However, an electrical drive system for mem-
brane-based photonic devices has not been realized thus far
because low index cladding layer materials such as dielectric
or air are insulator, we cannot inject current through such
cladding layers with a conventional vertical pn junction
structure in the membrane layers. Since the lateral current
injection (LCI) structure, reported for devices with thick
(1 �m) current-guiding layers,8) appears promising for
membrane-based photonic devices, we introduced an LCI
buried heterostructure (BH) into a thin-core (only 400 nm)
GaInAsP laser grown on a semi-insulating (SI) InP sub-
strate.9) Thus far, RT-CW operation has been demonstrated
with a threshold current of 11mA and a differential quantum
efficiency of 33%. Toward the PICs with the membrane-
based photonic devices, a lateral junction waveguide-type
photodiode, which consists of similar structures and is
suitable for monolithic integration with membrane lasers,
will be desired. Although a 1-Gbps eye opening with a
thick current-guiding LCI structure has been reported,10)

further investigation and improvement of device character-
istics is required for high-speed on-chip optical interconnec-
tion.

In this letter, we report the fundamental properties of a
lateral junction waveguide-type photodiode with thin current
injection layer.

The schematic structure and a scanning electron micro-
scope (SEM) top view of the fabricated device are shown in
Fig. 1. First, a wafer with undoped GaInAsP core layers
consisting of five quantum wells (QWs, Ga0:22In0:78As0:81-
P0:19, 6 nm thick), barriers (Ga0:26In0:74As0:49P0:51, 10 nm
thick), and optical confinement layers (OCLs, Ga0:21In0:79-
As0:46P0:54, 145-nm-thick OCLs on both sides), was prepared
by organometallic vapor-phase epitaxy (OMVPE) on an Fe-
doped SI-InP substrate. Then, the lateral junction structure
was fabricated by reactive ion etching (RIE) and two-step
OMVPE selective area growth, using a previously reported
method.9)

A cleaved device with a length and a stripe width (Ws) of
220 and 1.4 �m, respectively, was used for measurements.
Under the assumption confinement factor of a 5% into the
five-QWs and an absorption coefficient of 5000 cm�1 at a
wavelength of 1500 nm, most of the light input propagating
in this waveguide could be absorbed. Figure 2 shows the
voltage–current characteristic after the device was mounted
on a AlN sub-mount for high-speed measurement. The
differential resistance at the forward bias region of 34� is
mainly due to the sheet resistance of the p-InP layer. The
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Fig. 1. (Color online) Schematic structure and SEM top view of

fabricated device.
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dark current at �2V was 660 nA (220mA/cm2), which is
not sufficiently low for the device size.

The spectral response of the photocurrent, as shown in
Fig. 3, was measured using tunable lasers and a polarization
controller to couple only transverse-electric (TE)-polarized
light through a lensed fiber with a coupling loss of 3.7 dB.
The incident optical power, Pin, was fixed at 2mW, and the
Pin coupled to the waveguide was estimated to be around
0.85mW. Since the device length was sufficiently long,
the responsivity was estimated to be 0.9A/W (a quantum
efficiency of 72%) at 1500 nm and 0.27A/W at 1550 nm.
Figure 4 shows the incident power dependence of photo-
current, Iph, at a 1500-nm wavelength, and bias conditions
of 0, �1, and �2V. Saturation of the photocurrent due to
carrier accumulation was observed under the bias conditions
of 0 and �1V. Transverse-magnetic (TM)-mode response
was measured to be 0.65A/W around 1520-nm wavelength,
which is lower than the responsivity for TE mode because of
the compressively strained quantum wells.

High-speed measurements were performed at a 1550-nm
wavelength due to the limitation of our performance tester.
An electrical signal from a network analyzer was converted
into a light signal with a network performance tester in which
a LN modulator and a 1550-nm-wavelength DFB laser were
installed, then the light signal was converted into an electrical
signal by the lateral junction photodiode. The signal
calibration of the S21 characteristics of the network analyzer

was performed with consideration for the characteristics of
the electrical cable. Current–voltage conversion was per-
formed at an internal impedance of 50� using the network
analyzer. Figure 5 shows the frequency response of the
device, in which the reduction of the response on the low-
frequency side (<1GHz) might be due to a mismatch
between the impedance of the device on the submount and
the measurement setup. Because the submount didn’t contain
a 50� load resistance parallel to the photodiode for an
impedance matching, the output impedance at low-frequency
was dominated by reverse-biased resistance (> M�) of the
photodiode. The 3-dB bandwidth was observed to be 6
and 7.5GHz under the bias conditions of 0 and �2V,
respectively. The speed of the device was considered to be
limited by the carrier transit time (ttr) in the absorption layer,
because the RC time constant was not large due to lower
capacitance (C ¼ 20 fF), as compared to that in a vertical pn
junction structure.8,11) Figure 6 shows that the calculated
bandwidth dependence is limited by the transit time of holes
as a function of the applied electric field.12) Although the
bandwidth can be increased by applying the bias voltage, at a
certain point the carrier velocity becomes saturated. In this
calculation, the saturation velocity of holes of GaInAs was
assumed to be 6:0� 106 cm/s.13) To obtain a bandwidth
larger than 15GHz, the width of the waveguide must be as
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Fig. 2. (Color online) Measured I–V curve of lateral junction waveguide-

type diode.

Fig. 3. Spectral response of photocurrent for input power Pin of 0.85mW.

Fig. 4. (Color online) Photocurrent against incident power at 1500 nm for

different bias voltages.

Fig. 5. (Color online) Frequency response of lateral junction waveguide-

type photodiode at bias voltages of 0 and �2V.
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narrow as 500 nm.14) Another solution for extending the
bandwidth is the application of a uni-traveling-carrier (UTC)
structure that uses only electrons as its active carriers.15)

Figure 7 shows the bit error rate (BER) measurement
results under a non-bias condition for 1, 3, and 6Gbps and
eye diagrams at 6 and 10Gbps. A clear eye opening was
obtained at up to 10Gbps when biased with �2V. The
pseudo random bit sequence (PRBS) non-return-to-zero
(NRZ) signal with a word length of 231 � 1 from a pulse
pattern generator was converted into light signals using the

performance tester and input to the photodiode, after which
the electrical signal from the device was measured by the
error detector. The horizontal axis still contained the
coupling loss of 3.7 dB between the fiber and the waveguide.
Though the averaged received power for this measurement
was so high due to its poor responsivity, error-free back-
to-back transmissions were obtained from 1Gbps at the
coupled input power of �8:7 dBm to 6Gbps at �8:2 dBm
under a non-bias condition. By adopting an appropriate
design for the device, an improvement of the high received
power and a reduction in the device size could be realized.

In conclusion, a lateral junction waveguide-type photo-
diode with a thin current injection layer was fabricated on an
SI-InP substrate. A 3-dB bandwidth of 6GHz at 0V and
7.5GHz at �2V and an error-free detection up to 6Gbps at
0V were achieved. Further analysis and refinements are
required for high-speed operation with high responsivity for
application to membrane photonic circuits.
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Fig. 7. (Color online) BER characteristics under (a) non-bias condition

and (b) eye patterns for 6 and 10Gbps.
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